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Process-conditioned and Spatially Consistent Bias Correction 

Executive Summary 

Background 

Projections of the hydrologic impacts of climate change rely on a modeling chain that 
commonly includes estimates of future greenhouse gas emissions, global climate models, and 
that provides changes in time-varying boundary conditions as input to hydrologic models. The 
resulting time series of hydrologic model output, such as unregulated streamflow, are regularly 
used in turn as input for impact studies, for example studies to evaluate reservoir levels and 
releases under future conditions. While the hydrologic model results can sometimes be used 
directly in these impact studies, many applications require additional post-processing to 
remove systematic model biases. Water resources models and impact studies are a prime 
example application of simulated streamflow. Water resources models rely on specific flow 
rates or volumes for reservoir releases and diversions and if the unregulated streamflow inputs 
are significantly biased in time and/or space, modeling can result in inconsistent (or even 
erroneous) study findings. 

This post-processing step to remove model biases is typically referred to as bias-correction, 
even though the post-processing step often impacts the entire distribution of streamflow rather 
than only the mean. Various quantile-mapping approaches have been developed that adjust the 
entire distribution of modeled streamflow to match a reference distribution (commonly from a 
reconstructed naturalized streamflow dataset) developed over a specified historical period. 
Simulations of future streamflow are then post-processed using this same mapping to remove 
hydrologic model errors. 

All existing bias-correction methods assume that model biases under future conditions are 
similar to those in the past and do not vary with time. The methods differ in the selection of the 
streamflow timeseries that are used to develop the mapping and in the details of the actual 
mapping. For example, the streamflow bias-correction method that is currently in use by the 
Bureau of Reclamation (Reclamation) develops a separate quantile-mapping for each month of 
the year and uses that to correct projected future streamflow for that month. This method 
results in discontinuities in daily streamflow at month boundaries, but perhaps more 
importantly, it uses time (month of the year) as the organizing principle for developing the 
quantile-mapping, even though model biases are process rather than time-related. For example, 
a model bias in April during the reference period may be snow-melt related rather than April-
related. Applying an April-based mapping to future April conditions may result in a correction 
that is based on model deficiencies in the representation of snowmelt, even when snow may no 
longer be present in a future April. 
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Process-conditioned and Spatially Consistent Bias Correction 

A second shortcoming of existing streamflow bias-correction procedures is that they treat all 
flow locations independently, ignoring the topology of the channel network. As the interest has 
shifted toward model simulations with shorter time intervals (e.g., daily rather than monthly), 
this independent treatment of flow locations can result in physically inconsistent artifacts (e.g., 
flow mass balance) in incremental streamflow between successive downstream locations. 
The University of Washington (UW) has closely collaborated since 2013 with Bonneville 
Power Administration (BPA), Reclamation, and U.S. Army Corps of Engineers (USACE) on 
the River Management Joint Operating Committee Phase 2 (RMJOC-II) project to evaluate the 
effects of climate change on the hydrology of the Columbia River (RMJOC-II 2018). This 
project served both as an update to the RMJOC Phase 1 study and as an extension. As part of 
the update, RMJOC-II uses newer global climate model simulations (Coupled Model 
Intercomparison Project Phase 5 (CMIP5) rather than CMIP Phase 3 (CMIP3)). The extension 
focuses on an evaluation of methodological choices on the spread in streamflow projections. 
To that end, the RMJOC-II project uses multiple emission scenarios, global climate models, 
downscaling methods, hydrologic models, and model parameter data sets, resulting in 172 
different projections of climate change impacts on Columbia River streamflow. 

Initially the project used the same bias-correction method that has been broadly used across 
Reclamation projects, that is, a monthly quantile mapping approach with rescaling of daily 
values. However, the method resulted in multiple artifacts— for example, discontinuities at 
month boundaries and in some cases a substantial reshaping of the seasonal hydrographs. As 
part of the RMJOC-II project, the UW team developed an alternative bias-correction method 
which is based on the method of preservation of ratio (PresRat; Pierce et al. 2015). This 
method, titled bmorph (https://github.com/UW-Hydro/bmorph), operates on a daily time step, 
does not result in monthly discontinuities and maintains the ratio between future and historical 
streamflow volumes in the bias-corrected time series. In addition, bmorph ensures that timing 
shifts in the streamflow hydrograph are not affected by the bias-correction method itself but are 
the direct result of changes in timing in the raw model time series. However, in spite of these 
improvements, neither the original bias correction technique nor bmorph resolves all 
challenges. At least two major challenges remain to be addressed. Since bmorph adopts the 
timing of the original model output, it does not reproduce the timing of the reference 
streamflow (and thereby maintains bias in the timing of streamflow) for the historical period, 
which makes it difficult for use the resulting time series in water resources management 
studies, which is the main interest of the RMJOC-II project. In addition, since both methods 
correct all locations independently, incremental streamflow can exhibit the artifacts discussed 
above even after bias-correction. 

Research Outcomes and Work Products 

Reclamation partnered with UW to develop a new bias-correction method that a) uses 
hydrologic process as the basis for developing the mapping between reference and modeled 
streamflow; and b) accounts for the spatial connectivity that results from the channel network 
when processing multiple locations. 
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Process-conditioned and Spatially Consistent Bias Correction 

Results from implementing two modular and composable streamflow bias-correction 
techniques show how these techniques, which are designed with streamflow in mind, can be an 
improvement over existing methods. The simple regionalization technique presented in this 
work, based on interpolating between gauged locations, provides spatially distributed (and 
spatially consistent) bias-corrections, while still maintaining performance close to the 
performance of bias-corrections that are tuned at each individual gauge location independently. 

Results also show that correcting on daily minimum temperatures via conditional bias-
correction can improve the timing of the bias-corrected streamflow compared with the 
unconditioned bias-corrections across seasons in the Yakima River basin. The choice of the 
specific conditioning variable in the conditional bias correction method is flexible and can be 
based on locally dominant processes. Reducing bias in simulated streamflow is critical when it 
is used as input to a water resources model for the purpose of evaluating scenarios for long-
term water management and planning. Federal agencies, such as the Bureau of Reclamation, 
rely on these techniques to study how scenarios of future hydrology may impact existing 
reservoir operations, for example. These studies may inform future investments in 
infrastructure or modifications to operations. Refinement of bias-correction techniques may 
help reduce uncertainty in planning scenarios, thereby saving costs in structural or non-
structural modifications that may be based on over-conservative planning to compensate for 
future uncertainty. Currently, water managers rely on ad hoc approaches to developing local 
inflows based on streamflow simulations and simply live with the concept that bias-correction 
techniques cannot address changing streamflow timing. Alternative methods, such as the 
spatially consistent bias correction with conditioning (SCBC_C) method described here, are 
critical steps toward reducing uncertainties in planning scenarios. 

By demonstrating two approaches to bias-correcting streamflow simulations, we found that 
improvements can be made to the previously used methods that are generally taken from bias-
correcting climate and atmospheric models. By designing correction techniques which target 
distributed streamflow simulations, we can design new bias-correction methods that perform 
well. However, these initial implementations were built around the simplest possible method. 
Improving the way in which interpolation is performed between gauged locations, handling 
headwaters which flow into the mainstem, and allowing for conditioning on multiple variables 
may improve these methods further. The results of our bias-correction techniques are based on 
our initial workflow implementation. The bias correction method is designed in a way that 
allows it to be modular and extensible, making it easy to build on the initial implementation 
that is described in B2022. 

The work referenced above for the Yakima River basin has been accepted for publication to 
Journal of Hydrometeorology (Bennett et al. in press). The final manuscript is attached to this 
report as Appendix A. 
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Process-conditioned and Spatially Consistent Bias Correction 

Model codes for the bias correction procedure as well as documentation for the model code are 
available at the following links: 

• https://github.com/UW-Hydro/bmorph 

• https://bmorph.readthedocs.io/en/latest/bias_correction.html 

Computer code for the bmorph method, which was written in the Python programming 
language, and the release that corresponds to the work presented here, is also published with 
DOI: https://doi.org/10.5281/zenodo.5348463. Note that the GitHub code repository includes 
the source code and text for the model documentation. 

A webinar describing the bmorph package was held on September 9, 2021 for Reclamation 
staff. The webinar included a tutorial that is available online (see under Presentations, 
Publications, and Online resources below). The slides from the webinar are attached to this 
report as Appendix B. 

The development, application, and documentation of bmorph constituted the main part of the 
research work under the UW cooperative agreement. This work has been completed and 
resulted in software, documentation, and a journal article that is currently in press. 

In the process of completing the bias-correction application in the Yakima River basin, 
additional research questions were identified and explored as synergistic activities. Two such 
activities were—(1) experiments to explore non-stationarity in streamflow bias correction; and 
(2) an application of the new bias-correction—bmorph method (Bennett et al. in press) in the 
upper Rio Grande basin to explore its performance under a very different hydroclimate setting 
(North American Monsoon and groundwater flow dominated hydrology) than the Yakima 
River basin (predominantly snow-dominated hydrology). Discussions on these two activities 
are presented next. 

Experiments to Explore Non-stationarity in Streamflow Bias 
Correction 

In Fall 2021, an additional model experiment was conducted to evaluate the performance of the 
new bias correction method under a non-stationary climate. Specifically, we examined 
quantitatively how well a streamflow bias correction method trained on a historical period 
performs in bias correcting a future period. In this experiment, we used the output from two 
hydrologic models rather than observed (i.e., reference) and modeled times series. We treated 
the output from model A as the truth or reference time series and the output from model B as 
the time series that needs to be corrected. We then used bmorph to develop a mapping between 
the output from these models for one period and applied this mapping to correct the output 
from model B for a different (future) period. Finally, we evaluated whether the bias corrected 
streamflow time series more closely matches the output from model A than the uncorrected 
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Process-conditioned and Spatially Consistent Bias Correction 

time series. In the remainder of this summary, we refer to the streamflow simulations from 
model A as the reference time series and the simulations from model B as the simulated time 
series. 

We took advantage of the existing dataset of climate change projections for the Columbia 
River in the Pacific Northwest region of the United States and Canada (from the RMJOC-II 
study). This dataset, described in Chegwidden et al. (2019), was developed to evaluate the 
effects of methodological choices on the spread of the ensemble of climate change 
projections and uses CMIP5 climate projections. The full dataset contains 160 projections of 
future climate, consisting of two emission scenarios, ten climate models, two statistical 
downscaling methods and four hydrological model configurations. For this experiment, we 
used hydrologic outputs from two of the hydrologic model configurations, VIC-P1 and 
PRMS-P1. See Chegwidden et al. (2019) for more information about the model 
configurations. VIC refers to output from the Variable Infiltration Capacity (VIC) model 
(Liang et al. 1994) and PRMS refers to output from the Precipitation Runoff Modeling 
System (Leavesly et al. 1983), while P1 refers to a specific model configuration. Bias 
corrections were performed for both emission scenarios and all ten climate models. We 
limited ourselves to hydrologic variables based on climate model output that was downscaled 
and bias corrected using the multivariate adaptive constructed analogs (MACA) approach 
(Abatzoglou and Brown, 2012). In summary, we bias corrected 20 separate climate 
projections. 

We selected four subbasins that represent different hydroclimatic regions within the 
Columbia River basin. The Flathead River basin in the northeastern part of the Columbia 
River basin is strongly snow-dominant with a historical streamflow peak at the basin outlet in 
June. Under climate change the basin is expected to become transient by the 2080s under 
RCP85, although snow will continue to play an important role. The Yakima River basin is 
located on the leeward side of the Cascade mountain range and precipitation decreases from 
the mountainous headwaters to the basin outlet. The Deschutes River basin is located in the 
south central part of the Columbia River basin and is semi-arid with a large groundwater 
contribution to streamflow. Unfortunately, neither of the two hydrologic models captured this 
groundwater contribution particularly well, but because this is a perfect model experiment, we 
are mostly interested in the basin because it is drier and warmer than the Yakima River basin. 
Finally, the Willamette River basin is a rain-dominant basin, with streamflow peaks often 
associated with atmospheric river events during the fall and winter. 

We used the bmorph software package from B2022 to implement the bias correction 
workflows. This experiment explored bias corrections in non-stationary climate using the same 
types of bias corrections as described by B2022. In the first case, termed “independent bias 
correction” or IBC in B2022, streamflow time series at sites across the network were corrected 
independently. In the second case, termed “spatially consistent bias correction” or SCBC, 
bias corrections were applied to local inflows to each stream segment. These bias-corrected 
local inflows were then rerouted through the channel network. We conditioned on minimum 
air temperature (SCBC-T) following the example of B2022, who showed that minimum air 
temperature could act as a proxy for cold season processes, which play an important role in 
the hydrologic cycle in the study area, and which are expected to change in response to 
climate change. Conditioning on month-of-year or SCBC-M was motivated by streamflow 
bias 
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Process-conditioned and Spatially Consistent Bias Correction 

correction methods that have been used previously in climate change studies. These methods 
create mappings for each individual month-of-year and then apply these methods to the same 
months in the future. We trained the bias correction for the period 1950-10-01 to 1980-09-30 
(water years 1951 through 1980 or WY 1951-1980) and then bias corrected the flows for three 
future periods: WY 1981-2010 (1990s), WY 2041-2070 (2050s), and WY 2071-2099 (2080s). 
The final period was one year shorter because of the available model period. All experiments 
were run independently, so that the bias correction was retrained for each of the 20 projections, 
for each of the three experiments (SCBC-U, SCBC-M, and SCBC-T), and for each of the four 
study basins (see next section). As a result, we performed 240 separate bias corrections for 
three periods (1990s, 2050s, and 2080s). 

We examined the performance of the bias correction methods, both for the control period and 
the future periods. The choice of these metrics is motivated by previous studies of climate 
change in the Columbia River basin. We calculated the metrics for each of the 240 bias 
corrections described in the previous section and for each of the individual river segments in 
the four subbasins. 

Figure 1 illustrates a sample of preliminary results from the perfect model experiment. The 
figure conveys the difference in the centroid of timing of streamflow (in days) between the 
modeled timeseries (model B) and reference (model A). The centroid of timing is calculated as 
the day of the year when half the annual streamflow (based on water years) has passed the flow 
location. A value of zero (dashed horizontal line), indicates that the centroid of timing is the 
same for both the modeled and reference time series. The model time series shows an earlier 
centroid of timing in all periods. As is expected, the unconditional bias corrections (_u) do not 
change the timing of streamflow and show timing differences that are similar to those in the 
raw simulations. The conditional bias corrections (_c_month and _c_tair_vic) reduce the 
timing differences for all periods, including the future, with a slightly larger bias (but smaller 
spread) for the bias corrections conditioned on air temperature versus those conditioned on 
month of year. 

For the perfect model experiment in which we explored the implications of bias correction in a 
non-stationary climate (i.e., resulting from climate change), analysis of results is underway, 
and will be described in a manuscript that is being prepared for submission. 

Nijssen, B., A. Stein, A. Bennett, and M. McGuire, 2022: Stress testing streamflow bias 
correction methods using a perfect model experiment. Environmental Research: Climate, in 
preparation. 
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Process-conditioned and Spatially Consistent Bias Correction 

Figure 1.—Boxplots of the difference in the timing (days) of the centroid of the 
flow as a function of the bias correction method. The x-axis labels correspond to 
the following: raw denotes the uncorrected simulations, ibc denotes the 
independent bias correction method, scbc denotes the spatially consistent bias 
correction method, _u denotes that the bias correction was unconditioned on 
any other variable, and _c_month and _c_tair_vic denote conditioning on the 
month and on the air temperature, respectively. The boxplots show the values 
for all four case study basins. The box extends from the first quartile to the third 
quartile of the data, with a line at the median. The whiskers extend from the box 
by 1.5 times the inter-quartile range. The open circles show points that are past 
the end of the whiskers. 
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Process-conditioned and Spatially Consistent Bias Correction 

Application of the bmorph Method in the Upper Rio Grande 
Basin 

In addition to development of the new bias-correction techniques and their application in the 
Yakima River basin, we explored the application of the new bias correction methods in the Rio 
Grande basin (Figure 2), where losing reaches are known to exist (i.e. upstream streamflow is 
greater than downstream streamflow) and where conditioning variables may differ. 

Figure 3 illustrates preliminary results for bias correction at four locations within the upper Rio 
Grande basin, whose locations are illustrated in Figure 1. Results are illustrated only for the 
univariate bias corrections (indicated with labels including _u), which do not incorporate 
conditional bias correction. Results illustrate bias corrections using the IBC, “independent bias 
correction” and SCBC, “spatially consistent bias correction” approaches. As a result, the bias 
corrections do not show shifts in the timing of the hydrographs. To account for systematic 
timing shifts, additional exploration into the dominant processes driving, as well as biases in 
seasonal streamflow timing, would be required; that is, exploration into the appropriate 
conditioning variable or variables. Figure 1 shows that the SCBC method results in seasonal 
hydrographs that are generally closer to the reference dataset in the downstream-most locations 
but may not be an improvement over the IBC method at the “04_delnorte” location.  These 
results will need further analyses. The new methods show promise for maintaining mass 
balance of such a river system despite having reaches with a net loss of water. However, 
additional exploration would be required into how losing reaches may be represented in the 
river routing model that is part of the bias-correction workflow. 
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Process-conditioned and Spatially Consistent Bias Correction 

Figure 2.—Schematic of bias correction locations in 
the upper Rio Grande basin. 
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Process-conditioned and Spatially Consistent Bias Correction 

Figure 3.—Preliminary results for bias correction in the upper Rio Grande basin. 
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Process-conditioned and Spatially Consistent Bias Correction 

Main Report 
The work referenced above for the Yakima River basin has been accepted for publication to 
Journal of Hydrometeorology (Bennett et al. in press). The final manuscript is attached to this 
report as Appendix A. 

Further, a webinar describing the bmorph package was held on September 9, 2021 for 
Reclamation staff. The webinar included a tutorial that is available online (see under 
Presentations, Publications, and Online resources below). The slides for the webinar are 
attached to this report as Appendix B. 
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Process-conditioned and Spatially Consistent Bias Correction 

Presentations, Publications, and Online 
Resources 
Presentations: 

AGU Fall Meeting 2019: Nijssen, B., Bennett, A., and M. McGuire. 2019. A Spatially 
Consistent Bias Correction Technique for Distributed Streamflow Modeling. AGU 
Fall Meeting, H41N-1897, San Francisco, California. 

EGU Meeting 2020: Bennett, A., Nijssen, B., Cheng, Y., Stein, A., and M. McGuire. 
2020. Post-processing Hydrologic Model Output for Water Resources Studies: A 
Spatially-consistent, Process-based Correction Method. EGU General Assembly 
2020, Online, 4–8 May 2020, EGU2020-6036, https://doi.org/10.5194/egusphere-
egu2020-6036. 

Lunch-time seminar to NASA’s Advanced Software Technologies Group (ASTG): 
Bennett, A., Nijssen, B., Cheng, Y., Stein, A., and M. McGuire. 2020. Incorporating 
river network topology and process information into a streamflow post-processing 
technique. NASA Brownbag Seminar, Online, June 8, 2020. 

AGU Fall Meeting 2020: Stein, A., A. Bennett, B. Nijssen, B., and M. McGuire, M. 
2020. A Spatially Consistent Bias Correction Method for Hydro-climatically Diverse 
Watersheds. AGU Fall Meeting 2020, Online, December 7, 2020, H004-0015. 

USBR Webinar 2021: Bennett, A., B. Nijssen, A. Stein, and M. McGuire. 2021. A tool 
for bias correcting spatially distributed streamflow simulations with process-
dependent corrections. Webinar to US Bureau of Reclamation, Online, September 9, 
2021. See appendix B. 

Publications: 

Bennett, A., A. Stein, Y. Cheng, B. Nijssen, and M. McGuire. . A process-conditioned 
and spatially consistent method for reducing systematic biases in modeled 
streamflow. Journal of Hydrometeorology, in press. Available online at: 
https://doi.org/10.1002/essoar.10507877.3 . See appendix A. 

Nijssen, B., A. Stein, A. Bennett, and M. McGuire. 2022. Stress testing streamflow bias 
correction methods using a perfect model experiment. Environmental Research: 
Climate, in preparation. 
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Process-conditioned and Spatially Consistent Bias Correction 

Online resources: 

bmorph code repository: https://github.com/UW-Hydro/bmorph. Code for this project 
was released as v1.0.0 and is archived under https://doi.org/10.5281/zenodo.5348463. 

bmorph documentation: https://bmorph.readthedocs.io . Note that the source code for the 
documentation is part of bmorph’s GitHub repository. 

bmorph tutorial: A bmorph tutorial was created for online access using binder in support 
of the webinar for USBR on September 9, 2021. This tutorial is still available at 
https://notebooks.gesis.org/binder/v2/gh/UW-
Hydro/bmorph/tutorial?filepath=tutorial%2Fbmorph_tutorial.ipynb [Last accessed, 
February 8, 2022], but will not necessarily be maintained. Note that the source code 
for the documentation is part of bmorph’s GitHub repository. 
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Appendix A - A process-conditioned and 
spatially consistent method for reducing 
systematic biases in modeled streamflow 
A manuscript containing pertinent data and results pertaining to the development and evaluation 
of a new streamflow bias correction method is in press in Journal of Hydrometeorology. 

Bennett, A., A. Stein, Y. Cheng, B. Nijssen, and M. McGuire. 2022. A process-conditioned and 
spatially consistent method for reducing systematic biases in modeled streamflow. Journal of 
Hydrometeorology, in press. Available online at: https://doi.org/10.1002/essoar.10507877.3 . 

https://doi.org/10.1002/essoar.10507877.3
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ABSTRACT 

Water resources planning often uses streamflow predictions made by hydrologic models. 

These simulated predictions have systematic errors which limit their usefulness as input to 

water management models. To account for these errors, streamflow predictions are bias-

corrected through statistical methods which adjust model predictions based on comparisons 

to reference datasets (such as observed streamflow). Existing bias-correction methods have 

several shortcomings when used to correct spatially-distributed streamflow predictions. First, 

existing bias-correction methods destroy the spatio-temporal consistency of the streamflow 

predictions, when these methods are applied independently at multiple sites across a river 

network. Second, bias-correction techniques are usually built on time-invariant mappings 

between reference and simulated streamflow without accounting for the processes which 

underpin the systematic errors. 

We describe improved bias-correction techniques which account for the river network 

topology and allow for corrections that account for other processes. Further, we present a 

workflow that allows the user to select whether to apply these techniques separately or in 

conjunction. We evaluate four different bias-correction methods implemented with our 

workflow in the Yakima River Basin in the Northwestern United States. We find that all four 

methods reduce systematic bias in the simulated streamflow. The spatially-consistent bias-

correction methods produce spatially-distributed streamflow as well as bias-corrected 

incremental streamflow, which is suitable for input to water management models. We 

demonstrate how the spatially-consistent method avoids creating flows that are inconsistent 

between upstream and downstream locations, while performing similar to existing methods. 

We also find that conditioning on daily minimum temperature, which we use as a proxy for 

snowmelt processes, improves the timing of the corrected streamflow. 

SIGNIFICANCE STATEMENT 

To make streamflow predictions from hydrologic models more informative and useful for 

water resources management they are often post-processed by a statistical procedure known 

as bias-correction. In this work we develop and demonstrate bias-correction techniques which 

are specifically tailored to streamflow prediction. These new techniques will make modeled 

streamflow predictions more useful in complex river systems undergoing climate change. 

1. Introduction 
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The use of computational models of hydrologic systems has become a nearly ubiquitous 

way to forecast streamflow and plan for the allocation of water resources. However, these 

predictions are often biased, because they are subject to systematic errors in the model inputs, 

model parameter values, and process representations. Regardless of the source of these errors, 

which are often difficult to determine, the introduction of such biases in predictions degrades 

their quality. To address these biases, it is common to “bias-correct” or “post-process” these 

predictions through some statistical procedure (Chen et al. 2013; Guo et al. 2020; Hashino et 

al. 2007). These corrections are particularly important when simulated streamflow values are 

used as input to water resources models, in which specific streamflow and storage thresholds 

trigger water management decisions. We refer to these correction methods generally as “bias-

correction” techniques for simplicity, though they typically correct for the entire range of 

distributional errors rather than only for an overall bias in the mean. 

Bias-corrections are commonly applied at multiple steps and to multiple variables along 

the modeling chain (e.g. those described by Bosshard et al. 2013 and Wilby and Dessai 

2010), most often precipitation and temperature in atmospheric model output and streamflow 

in hydrologic model output. While these modeling chains are not all exactly alike, they do 

contain some commonalities that are relevant to this study (Figure 1). Depending on the 

spatial and/or temporal scale considerations a climate model (either a finer-scaled regional 

model or a coarser-scale global model) or a weather forecast model is used to generate 

meteorologic forcing data. This forcing data is often bias-corrected and possibly downscaled 

to a finer spatiotemporal resolution to drive the hydrologic model. Following running a 

hydrologic model the predicted streamflow is also commonly bias-corrected before being 

used in a water management model to make management decisions. 

Figure 1. An example of the type of hydrologic modeling chain that we considered when 
developing our streamflow bias correction methods (step 4, highlighted in red). 
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Most studies in the bias-correction literature deal with the correction of atmospheric 

variables (corresponding to step 2 in figure 1), especially in the context of climate change 

studies (Cannon 2018; Maraun 2013; Pierce et al. 2015; Shi et al. 2008; Wood et al. 2004). 

Precipitation and temperature in particular are often bias-corrected before they are used as 

input to hydrologic models. Few studies explicitly discuss streamflow bias-correction (step 4 

in figure 1). Hashino et al. (2007) evaluated three bias-correction methods (multiplicative 

correction, regression method, and quantile mapping) to bias-correct ensemble streamflow 

forecasts for a single site on the Des Moines River in Iowa, USA. Hamlet et al. (2013) used a 

quantile mapping procedure to bias-correct streamflow estimates in a study of climate change 

impacts on the hydrology of the Columbia River basin in the Pacific Northwest. Their bias-

correction procedure was based on earlier work by Snover et al. (2003) and Wood et al. 

(2002) in which a monthly varying correction was calculated based on naturalized historical 

flows and model simulations for the same period. These same corrections were then applied 

to simulated flows under different climate scenarios. Farmer et al. (2018) used flow-duration-

curves to bias-correct simulated streamflow at ungauged locations. All these examples are 

concerned with bias-correcting streamflow projections at longer timescales (generally greater 

than a month, often over many years), which is the general type of application that we 

considered during our method development as well. There may be other considerations in 

bias-correcting short-term and real-time streamflow forecasts, which we will explore in the 

discussion. 

We focus on bias-correction methods for streamflow simulations and address two 

shortcomings found in the existing methods as used in the previously discussed studies. First, 

streamflow bias-correction methods that originate from the atmospheric science literature 

tend to assume that bias-corrections can be applied independently at multiple locations on a 

river network. In doing so, they ignore the upstream-downstream connection imposed by the 

river network (which we refer to as spatial consistency). Bias-correction at upstream and 

downstream sites treat the same parcels of water, that originated at the headwaters, in 

potentially different ways. This alters the relationships between streamflow at upstream and 

downstream sites and reduces the spatial-consistency of streamflow across a river network. 

As a result, incremental flows between sites along a river network, which are often used as 

input to water management models often become physically unrealistic, especially at shorter 
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time intervals (e.g. daily flows). For example, in the Missouri Headwaters Basin Study 

(Bureau of Reclamation and Montana Department of Natural Resources and Conservation 

2021), bias-corrected streamflow used as input to a water resources model was problematic, 

because bias-corrections were developed independently for more than 20 sites, many of 

which had overlapping watershed areas. The methods we propose in this paper address this 

problem directly. 

Second, many existing streamflow bias-correction methods assume stationarity in the 

underlying processes between the reference period, which is used to train the bias-correction 

method, and the application period, for example the end of the 21st century. This has been 

shown to be a particularly important problem in the context of climate change projections 

(Maraun 2016). Although some methods condition the bias-correction on time-of-year (for 

example, a different quantile mapping for each month), the underlying assumption is that the 

same quantile mapping is valid for the same time-of-year in the future. This can be 

problematic. For example, imagine that a hydrologic model performs poorly in simulating 

snow melt and that snow melt historically occurs during April. A monthly varying bias-

correction procedure would then indicate a large correction in April. However, under a 

warming climate, snow melt may occur earlier or seasonal snow may disappear altogether 

(Musselman et al. 2017; Livneh and Badger 2020). In this case, the bias-correction would 

still result in a large bias-correction in April. This is because, as pointed out by Vrac and 

Friederichs (2015), many bias-correction techniques are not able to change the timing (that is, 

for example the “rank-chronology” as determined by the Spearman correlation) of the 

corrected timeseries. While some multivariate bias-correction techniques do not strictly 

adhere to this limitation (François et al. 2020; Cannon 2018; Clark et al. 2004), shifts in 

timing are more of an indirect-effect rather than the primary purpose of the techniques, so 

they are not suitable for correcting streamflow predictions in a changing climate. These 

multivariate techniques which allow for shifts in timing usually aim to maintain or correct the 

covariance structure between locations. However, for bias-correcting streamflow this is not 

applicable because of the directional and tree-like structure of the river network topology. 

Correcting for covariance structures on a river network would allow corrections at 

downstream sites to “propagate” up the river network, which we generally consider 

unphysical behavior. Similarly, models may have different biases under more extreme 

conditions which may become more prevalent in the future climate (Slater et al. 2021), 

thereby altering the cumulative distribution functions (CDFs) of simulated streamflow used 
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to calculate corrections. Rather than assuming stationarity for the underlying CDFs, we 

would like to allow for non-stationarity in processes that are primarily responsible for the 

systematic biases (process-conditioning). 

We propose to preserve spatial consistency across the river network by bias-correcting 

only the independent portions of the flows, that is, we correct the local flow contribution 

from each individual sub-basin. Then, these locally bias-corrected flows can be re-aggregated 

by a routing model that integrates surface runoff and upstream flow, as is normally done to 

produce the total streamflow. Bias-correction of intervening flows automatically ensures 

spatial consistency of the flows between upstream and downstream sites. This approach 

requires estimation of local inflows at all locations, including sites for which we do not have 

reference flows (for example, streamflow measurements). 

To allow for non-stationarity in the bias-correction and to allow for process-conditioning, 

we propose to condition our bias-corrections with respect to another variable on which the 

simulated errors may depend. This idea was originally proposed by Bellprat et al. (2013) who 

suggested such a method might be useful for accounting for the role of soil moisture in the 

correction of air temperatures. However, to our knowledge the idea remains untested for 

streamflow bias-correction. 

We evaluate our implementation of these bias-correction techniques on the Yakima River 

Basin in the Pacific Northwestern United States and demonstrate their ability to better 

preserve spatial consistency by comparing them against an independent bias-correction 

technique. Further, we show how process-conditioning, while accounting for environmental 

factors such as the air temperature, can improve bias-corrections. In section 2 we describe our 

methodology, including both a description of the spatially-consistent bias-correction method 

as well as our method of incorporating process-awareness into bias-correction methods. We 

also outline details of the Yakima River Basin and data sources in section 2. In section 3 we 

present the results of each of our test cases. Following the results, we discuss the current state 

of our workflows and discuss future avenues for development in section 4. Finally, we 

summarize and provide concluding remarks in section 5. 

2. Methods 

a. Study region and data 

6 

File generated with AMS Word template 2.0 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-21-0174.1. 
Unauthenticated | Downloaded 04/19/22 02:59 PM UTC 



 

 

  

  

   

  

   

 

   

 

 

 

     

 

 

   

 

 

 

    

  

   
  

We apply our bias-correction techniques to the Yakima River Basin in the Pacific 

Northwestern United States (figure 2). The Yakima River Basin is a 16 thousand square 

kilometer sub-basin of the Columbia River Basin located on the eastern slopes of the Cascade 

mountains in central Washington state. The Yakima River Basin has a strong gradient in 

hydroclimate from the headwaters to the outlet. The headwaters are characterized by the 

humid eastern slopes of the Cascade mountains and receive over 2500 mm of precipitation in 

an average year. The outlet at the confluence of the Yakima and Columbia Rivers is arid, 

receiving on average less than 250 mm of precipitation per year. This gradient in 

precipitation coincides with a large gradient in elevation, with the headwaters exceeding an 

elevation of 2000 meters and the outlet at just over 120 meters above mean sea level. Due to 

orographic effects in the headwaters, most of the precipitation falls as snow through the fall 

and winter months which drives a strong seasonal cycle in streamflow. 

Figure 2. Yakima River Basin map. Gauged sites are shown in red, and are labeled with 
their stream gauge abbreviations in panel a. The stream network topology, with gauged 
locations highlighted in red is shown in panel b. 

For this study we used simulations covering the entire Columbia river basin as described 

by Chegwidden et al. (2019). In particular we use the runoff generated by the simulations at a 

daily timestep for the historical period covering water years 1980-2009, from the Variable 
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Infiltration Capacity (VIC; Liang et al. 1994) model with the VIC-P1 parameter set 

(Chegwidden et al. 2019). The resulting runoff fields from the VIC simulations were 

arranged on a 1/16º latitude-longitude grid, however the approach we take for streamflow 

routing is based on a vector, or unstructured, river network mesh. To align the simulated 

runoff to the river network we then remapped the gridded 1/16º VIC output onto the 

Geospatial Fabric unstructured mesh (Viger and Bock 2014) using a weighted averaging 

scheme. The remapped runoff is then routed through the river network using the mizuRoute 

river routing model (Mizukami et al. 2016) to produce the raw simulated streamflow that is 

analyzed in this study. We used the impulse response function routing method from 

mizuRoute in this implementation, though in principle the kinematic wave tracking routing 

method should also work. Our bias-correction technique can be run on either gridded or 

unstructured domains, and we chose to use the unstructured domain because we had the 

mizuRoute setup for the Yakima River available on the unstructured mesh. 

Because neither VIC nor mizuRoute incorporates any land use or reservoir regulation 

components we use no regulation, no irrigation (NRNI) flows as our reference dataset instead 

of observations, which include the effects of human infrastructure (Pytlak et al. 2018). These 

NRNI flows were developed by the United States Army Corps of Engineers and the United 

States Bureau of Reclamation to produce flow estimates that are free of regulation and 

corrected for water withdrawals for irrigation. We used the NRNI flows to calculate the 

CDFs which are used to bias-correct the simulated flows. For all bias-corrections we use 

water years 1980-1991 to train the CDFs and 1992-2009 to apply the bias-corrections. Bias-

correction is performed at the daily timestep. 

Site Winter 

Average 

Daily Low 

Temp (ºC) 

Summer 

Average 

Daily High 

Temp (ºC) 

Winter Average 

Precipitation 

(mm/day) 

Summer 

Average 

Precipitation 

(mm/day) 

Upstream 

Area (km2) 

KEE -5.7 17.8 11.0 2.1 144 

KAC -4.6 21.1 7.1 0.9 167 

EASW -6.5 20.5 6.8 1.0 679 

CLE -5.3 22.8 4.6 0.5 526 
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YUMW -6.5 23.3 4.7 0.7 1304 

BUM -8.2 17.9 6.8 0.9 192 

AMRW -8.2 17.5 6.9 1.0 206 

CLFW -8.3 21.3 5.3 0.8 1228 

RIM -6.5 22.0 4.2 0.6 485 

NACW -7.7 25.2 2.2 0.4 2437 

UMTW -6.9 26.3 1.7 0.4 4135 

AUGW -5.5 28.5 1.4 0.4 525 

PARW -4.3 29.7 0.9 0.3 9592 

YGVW -3.2 30.0 0.8 0.3 13767 

KIOW -3.1 29.6 1.0 0.3 14444 

Table 1. Average meteorologic conditions at gauged sites which have reference NRNI 
streamflow 

b. Description of the bias-correction workflows 

The overall workflow for the bias-correction methods is shown in schematic form in 

figure 3. The workflow is split into two pieces, a preprocessing step and the bias-correction 

step. We built a reference implementation of this workflow in the software package, bmorph, 

which is freely available and open source (Bennett et al. 2021). For specifics of the input data 

requirements and configuration options see the bmorph documentation 

(https://bmorph.readthedocs.io). 

The preprocessing step depends on whether the chosen bias-correction method should 

enforce spatial consistency and whether the chosen bias-correction method should consider 

external variables through conditioning. If a spatially consistent method is selected the 

locations of the reference gauges must be mapped onto the river network topology, which is 

then used to locate upstream and downstream gauges for each river reach, along with an 

interpolation factor which is used to provide regionalized bias-corrections at each river reach. 

If process conditioning on another variable is used the other variable must also be associated 

with the underlying river network and gauge sites. For example, the meteorological data used 
9 
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to force the hydrologic model may not be on the same spatial domain as the river routing 

model, and so a way of selecting the meteorologic data which is overlapping with each river 

reach is determined in this step. We expand on the implementation of these bias-correction 

options in sections 2b and 2c, respectively. If neither of these options are selected, as in most 

traditional streamflow bias-correction methods, the preprocessing step may be omitted. 

Figure 3. Schematic of the workflow for the bias-correction options implemented in this 
study. 

Once preprocessing is complete, the resulting data can be input into the bias-correction 

workflow. This workflow also has branches for performing spatially consistent bias-

correction and conditional bias-correction. The current implementation allows for these 

options to be chosen independently, resulting in a flexible workflow that can be extended to 

add additional steps and/or options. For instance, we provide two underlying bias-correction 

techniques, the conditional bias-correction that we describe in section 2c and the Equidistant 

Cumulative Distribution Function method (EDCDFm; Li et al. 2010). In principle any 
10 
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number of other bias-correction techniques could be implemented independently of whether 

spatially consistent bias-correction is used. 

A post-processing technique similar to the one described in the PresRat method (Pierce et 

al. 2015) was used to preserve changes in the mean flow between the training period and the 

application period. Ours differs only in that it uses a rolling window (overlapping periods) of 

365 days rather than a strided window (non-overlapping periods). For clarity, because two 

methods of bias-correction were introduced in Pierce et al. (2015), the bias-correction 

technique that we mimic for our underlying implementation is applied in the time domain 

rather than the frequency domain. 

c. Spatially consistent bias-correction 

To implement a spatially consistent bias-correction technique for distributed streamflow 

predictions we have developed a regionalization technique which interpolates the target 

distribution between reference flow sites. A regionalization technique is required to perform 

bias-corrections for each local inflow, many of which do not have associated reference flows. 

The regionalization technique makes use of the topology of the river network by selecting 

target distributions which are nearby and interpolating between them as a function of some 

statistical measure (such as the correlation or a mean bias error). A schematic representation 

of this interpolation is shown in figure 4. 

11 
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Figure 4. Schematic of interpolated bias-correction. Panel a shows a schematic of stream 
segments where upstream and downstream gauge sites are highlighted with a black outline. 
Intermediate stream segments are colored via a linear color gradient. Panel b shows how 
CDFs are interpolated along the stream network. The color gradient of the CDFs matches the 
interpolation as you go from the upstream gauge site to the downstream gauge site in panel a. 

When interpolating between gauged sites we use the formula: 

𝑢𝑝 𝑢𝑝 𝑢𝑝(𝑄𝑜𝑐 , 𝑄𝑚𝑐, 𝑄𝑚𝑝) + (1 − 𝛼) ⋅ 𝐵𝐶𝑑𝑜𝑤𝑛(𝑄𝑑𝑜𝑤𝑛 𝑜𝑤𝑛 �̃� = 𝛼 ⋅ 𝐵𝐶 , 𝑄𝑑 (1)𝑖𝑛𝑡𝑒𝑟𝑝 𝑜𝑐 𝑚𝑐 , 𝑄𝑚𝑝) 

̃where 𝑄𝑖𝑛𝑡𝑒𝑟𝑝 is the bias-corrected streamflow for locations for which no reference flows 

are available, 𝐵𝐶𝑖 is the is the bias-correction function at either the upstream (𝑖 = 𝑢𝑝) or 

downstream (𝑖 = 𝑑𝑜𝑤𝑛) location, 𝑄𝑜𝑐 is the observed or reference data, 𝑄𝑚𝑐 represents the 

simulated streamflow values during the reference period, and 𝑄𝑚𝑝 the simulated streamflow 

that will be bias-corrected . The values for α are computed in the preprocessing step, which is 

also when the locations of the upstream and downstream gauge sites for each river reach are 

recorded (figure 4). 

The calculation of the α value can be done in a number of ways. For this study, we use 

the coefficient of determination ( ) between the streamflow at each intermediate site and the 

up/downstream simulated streamflow to determine the interpolation factor. Given an 
𝑢𝑝 𝑑𝑜𝑤𝑛 upstream streamflow, 𝑄 , and downstream streamflow, 𝑄 , then the interpolation factor 

for an intermediate streamflow, 𝑄𝑖, is given by: 

𝑟2(𝑄𝑖, 𝑄𝑢𝑝)
α = (2)

𝑟2(𝑄𝑖, 𝑄𝑢𝑝) + 𝑟2(𝑄𝑖, 𝑄𝑑𝑜𝑤𝑛) 

Two edge cases for computing the interpolation factor require special handling. When 

there are no gauge sites to select either up or down stream, we use gauges at other locations 

in the network that have the highest value. When a site has multiple upstream gauge sites 

as tributaries, we similarly choose the site which has the highest value of the available 

upstream sites. While we use the coefficient of determination as our method of interpolating 

between sites, it is possible to implement this approach for a wide array of appropriate 

measures of similarity. Our reference implementation in bmorph also includes options to 

regionalize based on spatial distance, Kullback-Leibler divergence (Cover and Thomas 

2006), and Kling-Gupta efficiency (Gupta et al. 2009), though we have not explored how 

these choices affect the resulting bias-corrections. 
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To compute the bias-corrected local flows we take the ratio of the bias-corrected total 

flow and raw total flow, which results in a multiplier describing the relative change that 

should be applied to the local inflows. Given that 𝑄𝑖 is a total uncorrected streamflow, �̃�𝑖 is 

the bias-corrected total streamflow from equation 1, and 𝑞𝑖 is a local simulated streamflow, 

then we compute the bias-corrected local flow at each river reach as 

̃𝑖 𝑄 
̃𝑖 𝑞 = 𝑞𝑖 ⋅ (3)

𝑄𝑖 

These corrected local flows are then re-routed through mizuRoute to produce a spatially-

consistent bias-corrected streamflow (SCBC). 

d. Conditional bias-correction 

We incorporate process information into the bias-correction scheme by modifying the 

EDCDFm algorithm (Li et al. 2010). The original EDCDFm equation is given as: 

�̃� −1 (𝐹𝑚𝑝(𝑄𝑚𝑝)) − 𝐹𝑚𝑐 (4)𝑚𝑝 = 𝑄𝑚𝑝 + 𝐹𝑜𝑐 
−1 (𝐹𝑚𝑝(𝑄𝑚𝑝)) 

where 𝑄𝑚𝑝 is the modeled streamflow, 𝐹𝑜𝑐
−1is the inverse of the CDF of the observed or 

reference data, 𝐹𝑚𝑝 is the CDF of the modeled projection, 𝐹𝑚𝑐 is the CDF of the modeled data 

during the reference period, and �̃�𝑚𝑝 is the corrected modeled projection. This formulation is 

extended to condition on a two-dimensional (2-D) probability distribution function (PDF): 

−1(𝐹𝑚𝑝(𝑄𝑚𝑝|𝑦𝑚𝑝)|𝑦𝑜𝑐) − 𝐹𝑚𝑐 (5)�̃�𝑚𝑝 = 𝑄𝑚𝑝 + 𝐹𝑜𝑐 
−1(𝐹𝑚𝑝(𝑄𝑚𝑝|𝑦𝑚𝑝)𝑦𝑚𝑐) 

where 𝑦𝑖 is the conditioning variable. To compute �̃�𝑚𝑝 we first calculate the 2-D PDF via 

a histogram estimator and then for each timestep at which we wish to correct, we compute the 

CDF conditioned on the value of 𝑦𝑖 for that timestep (figure 5). We refer to this method as 

conditional bias-correction (CBC). 
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Figure 5. Schematic of conditional bias-correction (CBC). Panel a shows how 
conditioning on two-dimensional PDFs is computed. First, the PDFs are estimated from the 
data using histograms. In this example, we show the daily minimum temperature on the x-
axis and streamflow on the y-axis. The left sub-plot shows the calculated PDF for the raw 
model data, while the right sub-plot shows the reference data. Areas of high probability are 
shown in brighter colors. The line at 0 ℃ indicates the position of conditioning for the daily 
minimum temperature. Panel b shows the CDF functions for both the raw and reference data 
as conditioned at 0 ℃. 

For this study we use as 𝑦𝑖 the daily minimum temperature given by the forcing data 

which was used to run the VIC model and set the number of bins in our histogram estimator 

to be 100 in both dimensions, though these parameters are adjustable by the user. We use the 

daily minimum temperature because we hypothesize that there are snowmelt related biases in 

the late-spring and early-summer periods, as will be explored in the results. 

e. Evaluation Scenarios 

To evaluate the spatially consistent and conditional bias-correction methods in the 

Yakima River Basin, we compare the results of each of the combinations of the two new 

methods against EDCDFm (Li et al. 2010). The four evaluation scenarios are detailed in 

Table 2. We refer to methods which use the blending as spatially consistent bias-correction 

(SCBC) techniques, while those that do not as independent bias-correction (IBC) techniques. 

Similarly, we denote methods which use the conditional bias-correction with C and those 

which do not condition as U (for univariate). In this case we refer to EDCDFm as IBC_U. By 

comparing each of the methods both independently and in conjunction we are better able to 

understand their impacts on bias-correction of streamflow. 
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Spatially consistent BC 

(using interpolation) 

Independent BC 

(no interpolation) 

Univariate BC SCBC_U IBC_U 

Conditional BC SCBC_C IBC_C 

Table 2. Combinations of methods used in the analysis. Both the blending and 
conditioning can be turned on and off independently, leading to four bias-correction methods. 

3. Results 

Our results are organized into three sections which evaluate different aspects of the bias-

correction process. In section 3a, we provide a general evaluation that compares the 

performance of the bias-correction methods across the Yakima River Basin. We show that all 

four correction methods can largely reduce the bias of the raw simulated streamflow, though 

some of their qualitative behaviors differ. In sections 3b and 3c, we further analyze these 

differences with respect to our two new methods. In section 3b, we show how conditioning 

on daily minimum temperatures improves the seasonal cycle of the bias-corrected streamflow 

as well as look at how the underlying probability distributions change with respect to the 

daily minimum temperature. In section 3c, we show how SCBC eliminates artifacts between 

river reaches. We also show how our SCBC method allows for finer grained analysis of bias-

correction on spatially distributed streamflow simulations. 

a. General evaluation 

In figure 6, we show the mean weekly hydrographs for all scenarios (including raw and 

NRNI flows) for the bias-corrected period at each of the gauged sites. For the northern sub-

regions (KEE, KAC, EASW, CLE, YUMW, and BUM), we see general agreement between 

the raw flows and the NRNI flows. At some of the sites (notably CLE and BUM) we see 

improvements in timing with the conditional bias-correction methods. In the western portions 

of the catchment between UMTW and PARW (that is, at AMRW, CLFW, RIM, NACW, and 

AUGW) we see relative disagreement between methods. Generally, methods which were 

conditioned on daily minimum temperatures were better able to capture the falling limb of the 

summer streamflow, indicating resulting flows were corrected to better correspond with 
15 

File generated with AMS Word template 2.0 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-21-0174.1. 
Unauthenticated | Downloaded 04/19/22 02:59 PM UTC 



 

 

  

 

  

 
  

 

 

  

 

  

  

 

   
  

hydrologic processes associated with minimum temperature. At the downstream, mainstem 

sites (UMTW, YGVW, and KIOW) we see that the conditional bias-corrections were largely 

better at capturing the patterns of the NRNI streamflow. 

Figure 6. Mean weekly flows over the bias-corrected period for each of the scenarios 
arranged in approximate stream order (upper left as headwaters, lower right as outlet). 

Aggregating this into percent biases across both gauged sites and time (figure 7) we see 

that all methods are largely able to reduce the bias with respect to the raw simulations. The 

raw flows have a high bias of, on average, about 25%, while all other methods had biases of 

less than +/-5%. Additionally, the spread in the mean biases is reduced considerably for all 

bias-correction techniques. The IBC methods show about twice as much reduction in the 

spread of biases as the SCBC methods, however the SCBC methods show better mean-bias 

reductions. 
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Figure 7. Boxplots of total percent biases across all sites and all time during the bias-
correction period. The center marker denotes the median percent bias, the ranges of the boxes 
denote the interquartile range, and the whiskers extend to 1.5 times the interquartile range. 
The ideal value of 0 is shown as a black line across the figure. 

In addition to just the mean biases, water managers may also be interested in the annual 

flow volumes throughout the river network. We analyze how these biases are changed at all 

of the gauged sites for each bias-correction method in figure 8. Generally, we see that all of 

the bias-correction methods improve the average and spread of the bias in annual flow 

volumes. Differences between bias-correction methods are most apparent between IBC and 

SCBC methods in the headwaters. At headwaters sites (e.g. EASW, BUM, and CLFW) we 

generally see that IBC-based methods are better able to capture the annual flows, though 

SCBC still provides better volumes than the uncorrected-predictions. We speculate that this is 

because of the way we select the upstream reference flows in the headwaters, as discussed in 

section 2c. At the downstream locations (PARW, YGVW, and KIOW) we see that all bias-
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correction methods reduce the mean bias effectively, though the SCBC methods show higher 

variability in their ability to do so. 

Figure 8. Boxplots of the ratio between each scenario and raw annual flow volumes 
during the application period (1992-2009, N=18). To calculate data for these boxplots we 
divided the cumulative annual streamflow for each method (RAW, IBC_U, etc) by the 
cumulative annual streamflow from the reference NRNI dataset for each water year. Subplot 
l) at AUGW is cut off to make the comparison across subplots easier. The center marker of 
each boxplot denotes the median percent bias, the ranges of the boxes denote the interquartile 
range, and the whiskers extend to 1.5 times the interquartile range. The ideal value of 1 is 
highlighted as a black horizontal line across each of the subplots. 

b. Effect of conditioning on the seasonal cycle 

To understand the effect of introducing a secondary variable to the bias-correction 

methodology. we analyzed the improvement of simulated streamflow for conditional bias-

correction methods (IBC_C and SCBC_C). From figure 6 we see that the conditioned bias-

correction methods are able to better match the timing of the falling limb of the hydrograph. 
18 

File generated with AMS Word template 2.0 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-21-0174.1. 
Unauthenticated | Downloaded 04/19/22 02:59 PM UTC 



 

 

  

 

 

   

  

  

 

   

  

  

  

 

 

   
  

To quantify this effect, we calculate the percent biases on a seasonal basis, as shown in figure 

9. 

Generally, we see that for the winter and summer months (figure 9 panels a and b, 

respectively) the conditioning on daily minimum temperature results in substantially reduced 

bias from the raw flows. In the case of the winter season, the unconditioned bias-corrections 

actually increased the flow biases. During the spring and fall seasons (figure 8 panels c and d, 

respectively) we see that the conditioned bias-correction methods perform similarly to the 

unconditioned variants. This is one indication that our choice in using the daily minimum 

temperature as a proxy for model bias was a reasonable choice. We further explore this 

choice in section 3c. While we could have chosen any number of other conditioning 

variables, we chose daily minimum temperatures based on the knowledge of the underlying 

hydrometeorology of the Yakima River Basin. In the discussion we expand on how we might 

be able to more systematically understand or derive processes or variables to condition on. 
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Figure 9. Boxplots of the percent bias for each of the seasons. Panel a shows the biases 
for all scenarios in winter months (DJF), panel b summer months (JJA), panel c spring 
months (MAM), and panel d fall months (SON). The center marker of each boxplot denotes 
the median percent bias, the ranges of the boxes denote the interquartile range, and the 
whiskers extend to 1.5 times the interquartile range. The ideal value of 0 is highlighted as a 
black horizontal line across each of the subplots. 

To better understand how the conditioning on daily minimum temperature impacted bias-

corrections we compute the reference CDFs across a range of values for the conditioning 

variable, daily minimum temperature, at basins in the headwaters (at EASW) and near the 

outlet along the mainstem (at YGVW) in figure 10. To do so, we first compute the joint 2-D 

PDFs and then marginalize on the values of 𝑇𝑚𝑖𝑛 at equally spaced quantiles across the 

distribution of 𝑇𝑚𝑖𝑛. For both sites we found that there were substantial differences in the 

CDFs for different daily minimum temperatures. At EASW all of the CDFs appear to be 

unimodal, though the steepness and location of the median flow changes with different 

temperatures. 

However, at the downstream site (YGVW; figure 10 panel b), we see that the relative 

shapes of the CDFs change based on the daily minimum temperature. For both the low and 

high daily minimum temperatures the CDFs are generally steeper than the univariate 

equivalent and are still unimodal. However, the CDFs for the curves conditioned at 𝑇𝑚𝑖𝑛 = 

4.7 ∘𝐶 and 𝑇𝑚𝑖𝑛 = 8.6 ∘𝐶 have a bimodal structure. This is because the daily minimum 

temperature occurs in an annual cycle and that values corresponds to two different times of 

year with much different streamflow signatures, for example in spring temperatures are 

warming and in fall when temperatures are cooling. This is in contrast to the high and low 

values, which only occur in the summer and winter months, respectively. We further explore 

this choice of conditioning variable in the supplementary information and discuss the 

implications of using a conditioning variable with a seasonal cycle in section 4. Figure 10 

also gives us a way of anticipating how process-conditioned bias-correction methods will 

behave in a warming climate. In future conditions where we expect temperatures to be higher, 

this method would end up using more of the CDFs from the red lines and less from the blue 

lines. 
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Figure 10. Comparison of cumulative distribution functions (CDFs) for univariate bias-
correction (solid black line) and conditional bias-correction at several daily minimum 
temperatures (shaded blue to red lines). Panel a shows CDFs for a headwaters site (EASW) 
and panel b shows CDFs for a site on the mainstem of the Yakima River Basin near the outlet 
(YGVW). 

c. Effect of spatially consistent bias-correction 

Thus far we have only looked at the bias-corrections at each gauge location 

independently, and though we have found that generally the SCBC-based methods are able to 

reduce systematic bias in the simulated streamflow, they are not quite as performant as the 

IBC methods. However, as discussed in the introduction, independently bias-corrected 

streamflow can result in inconsistent behaviors for local inflows while the spatially consistent 

method was designed to avoid these artifacts. 

Figure 11 shows the weekly incremental streamflow at three locations (KEE, NACW, and 

CLFW) on the Yakima River Basin. We determined the incremental streamflow (or local 

inflow) by subtracting the flows at the upstream gauged sites. We chose to aggregate to the 

weekly timescale to eliminate any artifacts of the transit time from upstream to downstream 

gauged locations for IBC. In all three locations we found periods for which the IBC method 

shows negative streamflow for at least a week, while SCBC maintains positive streamflow. It 

is worth noting that in all three cases these are not losing reaches and that the negative 

streamflow is purely an artifact of the bias-correction technique. This is most noticeable at 

NACW with the inflows from RIM and CLFW removed, where these artificial negative 

streamflow happen quite regularly and can be relatively large. While the resulting negative 
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flows are less at the other two sites shown in figure 11, they are an artifact of the method and 

may cause errors in water management model simulations. 

Figure 11. Comparison of streamflow with the streamflow from upstream gauged sites 
removed. 

In addition to providing incremental streamflow at the gauged locations the SCBC 

method provides bias-corrected streamflow along every river reach in the simulation domain, 

something that the IBC methods do not provide. We show these as mean changes from the 

raw streamflow in figures 12 (winter streamflow) and 13 (summer streamflow). These figures 

show the spatial structure of the bias-corrections across the network. For both periods we see 

large, spatially coherent differences between unconditional corrections (SCBC_U) and 

conditional corrections (SCBC_C). During the winter period (figure 12) we see that 

unconditional bias-correction (SCBC_U) (figure 12a) largely works to decrease streamflow, 

except in the furthest headwaters. For conditional corrections (SCBC_C, figure 12b) we see 

that the bias-correction tended to increase streamflow, particularly along the upper portion of 

the basin. There are some decreases in the tributaries which flow into the mainstem further 

downstream, though not as drastic as the unconditional corrections (SCBC_U). 
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Figure 12. Change in the streamflow at each river reach in the Yakima River Basin for 
both spatially consistent configurations during winter (DJF). 

The summer unconditional corrections (SCBC_U) (figure 13a) look similar to those in the 

winter (figure 12a), because the unconditional bias-correction is not able to modify the timing 

of the corrected streamflow. This can be seen in the annual corrections as well (figure S3, in 

the supplemental information). However, for conditional (SCBC_C) corrections in the 

summer (figure 13b) we see that there are drastic changes from the corrections of winter 

(figure 13b). During the summer SCBC_C almost universally decreases streamflow, with the 

exception of a few locations in the upper headwaters. The reduction in streamflow during the 

summer and increase in the winter from SCBC_C, particularly in the snowy headwaters, 

further demonstrates that conditionally bias-correcting on daily minimum temperatures can 

be a good proxy for errors in snow representation of the hydrologic model. 
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Figure 13. Change in the streamflow at each river reach in the Yakima River Basin for 

both spatially consistent configurations during summer (JJA). 

4. Discussion 

We have implemented and demonstrated two new techniques for bias-correcting 

distributed streamflow simulations. The first technique, spatially consistent bias-correction, 

allows for bias-correcting spatially distributed streamflow simulations explicitly, which 

maintains the relationships between gauged locations. The second technique, conditional 

bias-correction, allows for considering other variables during the bias-correction process by 

conditioning on a multidimensional probability distribution built on the streamflow as well as 

the other variables to be considered. We have shown that these methods can be developed in 

a modular and composable way (that is, we can arbitrarily choose to use spatially consistent 

methods and conditional methods independently) and have demonstrated their effects when 

applied separately as well as in conjunction. 
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The spatially consistent bias-correction method is built on a regionalization technique 

which interpolates between gauged locations where reference streamflow is available. The 

current implementation is based on interpolating between gauged locations based on the 

correlation coefficient, though other methods of interpolation could, in principle, be 

implemented in our framework. This method maintains spatial consistency by bias-correcting 

the local flows at each stream segment, and then aggregating them through a river routing 

model. 

Our implementation of spatially consistent bias-correction in the Yakima River Basin 

showed that correcting local streamflow directly and then rerouting it to recover the total 

bias-corrected streamflow has similar performance in reducing bias as independent bias-

correction. Further, it produces bias-corrected streamflow at every river reach in the domain, 

which can be used for other purposes, such as inputs into water management or other 

operational models (Bureau of Reclamation and Montana Department of Natural Resources 

and Conservation 2021). In addition to the benefits of producing bias-corrected local and total 

streamflow at all river reaches, this approach eliminates artifacts in the relationship between 

gauged locations that independent bias-correction can introduce. 

The conditional bias-correction method is currently built by computing discretized PDFs 

on streamflow and an additional conditioning variable via the histogram method. In this 

study, we chose to use the daily minimum temperature as the conditioning variable, as a 

proxy for snowmelt processes. We showed that conditioning on the daily minimum 

temperature was able to improve the timing of the bias-corrected streamflow in the Yakima 

River Basin. However, it remains an open question of how to choose the conditioning 

variable in general. While it is theoretically possible to include more variables to condition 

on, this becomes impractical quickly due to the curse of dimensionality, where the number of 

possible variable combinations grows exponentially faster than the amount of data, ultimately 

leading to empirically estimated PDFs which are very sparse, and thus noisy (Bellman 2010). 

We anticipate that additional pre-bias-correction analysis will need to be done on a region-

by-region basis to determine which dominant processes to correct for. 

In this study we were primarily interested in bias-correcting streamflow values over 

multiple years. However, streamflow bias correction is also routinely applied over shorter 

(hourly to monthly) timescales, for example as part of real-time forecasting operations.. 

While we have not evaluated the performance of our methods at these shorter timescales, we 
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note that quantile mapping based techniques are used in these applications as well. Because 

of this, we hypothesize that the process-conditioned bias-correction technique could translate 

well to shorter-scale applications, particularly by conditioning on the initial state of the 

hydrologic model, which is often a large source of error in the forecasts. However, we 

anticipate that modifications would be needed to ensure that these approaches could be 

transferred without unanticipated consequences. 

5. Conclusions 

Our results from implementing two modular and composable streamflow bias-correction 

techniques show how bias-correction techniques, which are designed with streamflow in 

mind, can make improvements over existing methods. Our simple regionalization technique 

based on interpolating between gauged locations provides spatially distributed (and spatially 

consistent) bias-corrections, while still maintaining performance close to the performance of 

bias-corrections that are tuned at each individual gauge location independently. We also show 

that correcting on daily minimum temperatures via conditional bias-correction can improve 

the timing of the bias-corrected streamflow over the unconditioned bias-corrections across 

seasons in the Yakima River Basin. The choice of the specific conditioning variable in the 

conditional bias correction method is flexible and can be based on locally dominant 

processes. 

Reducing bias in simulated streamflow is critical when it is used as input to a water 

resources model for the purpose of evaluating scenarios for long-term water management and 

planning. Federal agencies such as the Bureau of Reclamation rely on these techniques to 

study how scenarios of future hydrology may impact existing reservoir operations, for 

example. These studies may inform future investments in infrastructure or modifications to 

operations. Refinement of bias-correction techniques may help reduce uncertainty in planning 

scenarios, thereby saving costs in structural or non-structural modifications that may be based 

on over-conservative planning to compensate for future uncertainty. Currently, water 

managers rely on ad hoc approaches to developing local inflows based on streamflow 

simulations and simply live with the concept that bias-correction techniques cannot address 

changing streamflow timing. Alternative methods, such as the SCBC_C method described 

here are critical steps toward reducing uncertainties in planning scenarios. 
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By demonstrating two approaches to bias-correcting streamflow simulations we find that 

improvements can be made to the previously used methods that are generally taken from 

bias-correcting climate and atmospheric models. By designing correction techniques which 

target distributed streamflow simulations we can design new bias-correction methods which 

perform well. However, these initial implementations were often built around the simplest 

possible method. Improving the way which interpolation between gauged locations, handling 

headwaters which flow into the mainstem, and allowing for conditioning on multiple 

variables may improve these methods further. 

The results of our bias-correction techniques are based on our initial workflow 

implementation. We have developed a python package, bmorph, which includes the 

implementation that was used for this analysis (Bennett et al. 2021). It also includes the setup 

for the Yakima River Basin as analyzed here as a tutorial dataset. The code and data for 

running this analysis is also available at doi:10.5281/zenodo.5348461. We have designed 

bmorph in a way that allows it to be modular and extensible, making it easy to build on the 

initial implementations that we have described here. 
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Appendix B – Water Operations and Planning 
Monthly Seminar Series, September 2021 
USBR Webinar 2021: Bennett, A., B. Nijssen, A. Stein, and M. McGuire. 2021. A tool for bias 

correcting spatially distributed streamflow simulations with process-dependent corrections. 
Webinar to US Bureau of Reclamation, Online, September 9, 2021. 
https://doimspp.sharepoint.com/sites/bor-Water-Operations-and-
Planning/videos/Forms/AllItems.aspx?id=%2Fsites%2Fbor-Water-Operations-and-
Planning%2Fvideos%2FSeptember 2021 Water Operations Planning Seminar 
pt2%2Emp4&parent=%2Fsites%2Fbor-Water-Operations-and-Planning%2Fvideos 

https://doimspp.sharepoint.com/sites/bor-Water-Operations-and-Planning/videos/Forms/AllItems.aspx?id=%2Fsites%2Fbor-Water-Operations-and-Planning%2Fvideos%2FSeptember%202021%20Water%20Operations%20Planning%20Seminar%20pt2%2Emp4&parent=%2Fsites%2Fbor-Water-Operations-and-Planning%2Fvideos
https://doimspp.sharepoint.com/sites/bor-Water-Operations-and-Planning/videos/Forms/AllItems.aspx?id=%2Fsites%2Fbor-Water-Operations-and-Planning%2Fvideos%2FSeptember%202021%20Water%20Operations%20Planning%20Seminar%20pt2%2Emp4&parent=%2Fsites%2Fbor-Water-Operations-and-Planning%2Fvideos
https://doimspp.sharepoint.com/sites/bor-Water-Operations-and-Planning/videos/Forms/AllItems.aspx?id=%2Fsites%2Fbor-Water-Operations-and-Planning%2Fvideos%2FSeptember%202021%20Water%20Operations%20Planning%20Seminar%20pt2%2Emp4&parent=%2Fsites%2Fbor-Water-Operations-and-Planning%2Fvideos
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